
UPCISS

JavaScript & Angular JS

Free Online Computer Classes on
YouTube Channel UPCISS

www.youtube.com/upciss

Video Tutorial
Full Playlist Available on

YouTube Channel UPCISS

Copyright © 2021 UPCISS

Website: www.upcissyoutube.com YouTube Channel: UPCISS

1

JavaScript Introduction

JavaScript Variables

JavaScript Reserved Words

JavaScript Output

JavaScript Statements

JavaScript Operators

JavaScript Data Types

JavaScript Functions

JavaScript Objects

Conditional Statements

JavaScript Popup Boxes

JavaScript Events

JavaScript Form Validation

AngularJS

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

2

Introduction to Scripting Languages

All scripting languages are programming languages. The scripting language is

basically a language where instructions are written for a run time environment. They

do not require the compilation step and are rather interpreted. It brings new

functions to applications and glue complex system together. A scripting language is

a programming language designed for integrating and communicating with other

programming languages.

Advantages of scripting languages:

 Easy learning: The user can learn to code in scripting languages quickly, not

much knowledge of web technology is required.

 Fast editing: It is highly efficient with the limited number of data structures
and variables to use.

 Interactivity: It helps in adding visualization interfaces and combinations in
web pages. Modern web pages demand the use of scripting languages. To create
enhanced web pages, fascinated visual description which includes background

and foreground colors and so on.
 Functionality: There are different libraries which are part of different scripting

languages. They help in creating new applications in web browsers and are
different from normal programming languages.

There are two types of scripting language

Client-side scripting is performed to generate a code that can run on the client
end (browser) without needing the server side processing. Basically, these types of

scripts are placed inside an HTML document. The client-side scripting can be used
to examine the user’s form for the errors before submitting it and for changing the

content according to the user input. As I mentioned before, the web requires three
elements for its functioning which are, client, database and server.

Server-side scripting is a technique of programming for producing the code which

can run software on the server side, in simple words any scripting or programming

that can run on the web server is known as server-side scripting. The operations like

customization of a website, dynamic change in the website content, response

generation to the user’s queries, accessing the database, and so on are performed

at the server end.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

3

BASIS FOR

COMPARISON
SERVER-SIDE SCRIPTING CLIENT-SIDE SCRIPTING

Basic Works in the back end which

could not be visible at the

client end.

Works at the front end

and script are visible

among the users.

Processing Requires server interaction. Does not need interaction

with the server.

Languages

involved

PHP, ASP.net, Ruby on Rails,

ColdFusion, Python, etcetera.

HTML, CSS, JavaScript,

etc.

Affect Could effectively customize

the web pages and provide

dynamic websites.

Can reduce the load to the

server.

Security Relatively secure. Insecure

JavaScript Introduction
JavaScript is a cross-platform, object-oriented scripting language used to make
webpages interactive (e.g., having complex animations, clickable buttons, popup

menus, etc.). JavaScript contains a standard library of objects, such
as Array, Date, and Math, and a core set of language elements such as operators,
control structures, and statements.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

4

JavaScript Can Change HTML Content

One of many JavaScript HTML methods is getElementById().

The example below "finds" an HTML element (with id="demo"), and changes the

element content (innerHTML) to "Hello JavaScript":

<html>

<body>

<h2>What Can JavaScript Do? </h2>

<p id="demo">JavaScript can change HTML content. </p>

<button type="button"
onclick='document.getElementById("demo").innerHTML = "Hello

JavaScript!"'>Click Me! </button>

</body>

</html>

JavaScript Can Change HTML Styles (CSS)

Changing the style of an HTML element, is a variant of changing an HTML attribute:

<p id="demo">JavaScript can change the style of an HTML element.</p>

<button type="button"

onclick="document.getElementById('demo').style.fontSize='35px'">Click
Me!</button>

JavaScript Can Hide HTML Elements

Hiding HTML elements can be done by changing the display style:

<p id="demo">JavaScript can hide HTML elements.</p>

<button type="button"
onclick="document.getElementById('demo').style.display='none'">Click

Me!</button>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

5

JavaScript Syntax
 JavaScript syntax is the set of rules, how JavaScript programs are constructed:

// How to create variables:

var x;

let y;

// How to use variables:

x = 5;

y = 6;

let z = x + y;

JavaScript Values

The JavaScript syntax defines two types of values:

 Fixed values
 Variable values

Fixed values are called Literals.

Variable values are called Variables.

JavaScript Literals

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

10.50

1001

2. Strings are text, written within double or single quotes:

"John Doe"

'John Doe'

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

6

JavaScript Where To

The <script> Tag

In HTML, JavaScript code is inserted between <script> and </script> tags.

<script>
document.getElementById("demo").innerHTML = "My First JavaScript";
</script>

JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or in

both.

<html>
<head>

<script>

function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph

changed.";
}

</script>
</head>

<body>

<h2>JavaScript in Head</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

</body>
</html>
Placing scripts at the bottom of the <body> element improves the display speed,

because script interpretation slows down the display.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

7

External JavaScript

Scripts can also be placed in external files:

External file: myScript.js

function myFunction() {

 document.getElementById("demo").innerHTML = "Paragraph changed.";

}

External scripts are practical when the same code is used in many different web

pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src (source)

attribute of a <script> tag:

<html>

<body>

<h2>External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>(myFunction is stored in an external file called "myScript.js")</p>

<script src="myScript.js"></script>

</body>

</html>

JavaScript Functions and Events

A JavaScript function is a block of JavaScript code, that can be executed when

"called" for.

For example, a function can be called when an event occurs, like when the user
clicks a button.

You will learn much more about functions and events in later chapters.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

8

JavaScript Variables

Variables

Variables are containers for storing data (values).

In this example, x, y, and z, are variables, declared with the var keyword:

There are 3 ways to declare a JavaScript variable:

 Using var
 Using let
 Using const

You declare a JavaScript variable with the var keyword:

<body>

<h2>JavaScript Variables</h2>

<p>In this example, x, y, and z are variables.</p>

<p id="demo"></p>

<script>

var x = 5;
var y = 6;

var z = x + y;
document.getElementById("demo").innerHTML =

"The value of z is: " + z;
</script>

</body>

Much Like Algebra

In this example, price1, price2, and total, are variables:

Example

var price1 = 5;

var price2 = 6;

var total = price1 + price2;

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

9

JavaScript Identifiers

All JavaScript variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum,
totalVolume).

The general rules for constructing names for variables (unique identifiers) are:

 Names can contain letters, digits, underscores, and dollar signs.

 Names must begin with a letter
 Names can also begin with $ and _

 Names are case sensitive (y and Y are different variables)
 Reserved words (like JavaScript keywords) cannot be used as names

JavaScript identifiers are case-sensitive.

JavaScript Reserved Words
In JavaScript you cannot use these reserved words as variables, labels, or function

names:

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

10

JavaScript Data Types

JavaScript variables can hold numbers like 100 and text values like "John Doe".

In programming, text values are called text strings.

JavaScript can handle many types of data, but for now, just think of numbers and
strings.

Strings are written inside double or single quotes. Numbers are written without
quotes.

If you put a number in quotes, it will be treated as a text string.

Example

var pi = 3.14;

var person = "John Doe";

var answer = 'Yes I am!';

Declaring (Creating) JavaScript Variables

Creating a variable in JavaScript is called "declaring" a variable.

You declare a JavaScript variable with the var keyword:

var carName;

After the declaration, the variable has no value (technically it has the value
of undefined).

To assign a value to the variable, use the equal sign:

carName = "Volvo";

You can also assign a value to the variable when you declare it:

var carName = "Volvo";

One Statement, Many Variables

You can declare many variables in one statement.

Start the statement with var and separate the variables by comma:

var person = "John Doe", carName = "Volvo", price = 200;

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

11

Value = undefined

In computer programs, variables are often declared without a value. The value can

be something that has to be calculated, or something that will be provided later,

like user input.

A variable declared without a value will have the value undefined.

The variable carName will have the value undefined after the execution of this

statement:

Example

var carName;

Re-Declaring JavaScript Variables

If you re-declare a JavaScript variable, it will not lose its value.

The variable carName will still have the value "Volvo" after the execution of these

statements:

Example

var carName = "Volvo";
var carName;

JavaScript Let
The let keyword was introduced in ES6 (2015).

Variables defined with let cannot be Redeclared.

Variables defined with let must be Declared before use.

Variables defined with let have Block Scope.

Cannot be Redeclared

Variables defined with let cannot be redeclared.

You cannot accidentally redeclare a variable.

With let you can not do this:

http://www.upcissyoutube.com/
https://www.w3schools.com/js/js_es6.asp

Website: www.upcissyoutube.com YouTube Channel: UPCISS

12

Example

let x = "John Doe";

let x = 0;

// SyntaxError: 'x' has already been declared

With var you can:

Example

var x = "John Doe";

var x = 0;

Block Scope

Before ES6 (2015), JavaScript had only Global Scope and Function Scope.

ES6 introduced two important new JavaScript keywords: let and const.

These two keywords provide Block Scope in JavaScript.

Variables declared inside a { } block cannot be accessed from outside the block:

Example

{

 let x = 2;

}

// x can NOT be used here

Variables declared with the var keyword can NOT have block scope.

Variables declared inside a { } block can be accessed from outside the block.

Example

{

 var x = 2;

}

// x CAN be used here

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

13

Redeclaring Variables

Redeclaring a variable using the let keyword can solve this problem.

Redeclaring a variable inside a block will not redeclare the variable outside the

block:

Example

let x = 10;

// Here x is 10

{

let x = 2;

// Here x is 2

}

// Here x is 10

Let Hoisting

Variables defined with var are hoisted to the top and can be initialized at any time.

Meaning: You can use the variable before it is declared:

Example

This is OK:

carName = "Volvo";

var carName;

Variables defined with let are also hoisted to the top of the block, but not

initialized.

Meaning: Using a let variable before it is declared will result in a Reference Error:

Example

carName = "Saab";

let carName = "Volvo";

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

14

JavaScript Output

JavaScript Display Possibilities

JavaScript can "display" data in different ways:

 Writing into an HTML element, using innerHTML.
 Writing into the HTML output using document.write().
 Writing into an alert box, using window.alert().

Using innerHTML

To access an HTML element, JavaScript can use

the document.getElementById(id) method.

The id attribute defines the HTML element. The innerHTML property defines the HTML

content:

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My First Paragraph</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 + 6;

</script>

</body>

</html>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

15

Using document.write()

For testing purposes, it is convenient to use document.write():

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

document.write(5 + 6);

</script>

</body>
</html>

Using document.write() after an HTML document is loaded, will delete all existing

HTML:

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<button type="button" onclick="document.write(5 + 6)">Try it</button>

</body>

</html>

The document.write() method should only be used for testing.

Using window.alert()

You can use an alert box to display data:

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

16

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

window.alert(5 + 6);

</script>

</body>
</html>

You can skip the window keyword.

In JavaScript, the window object is the global scope object, that means that

variables, properties, and methods by default belong to the window object. This
also means that specifying the window keyword is optional:

JavaScript Print

JavaScript does not have any print object or print methods.

You cannot access output devices from JavaScript.

The only exception is that you can call the window.print() method in the browser to

print the content of the current window.

Example

<!DOCTYPE html>

<html>

<body>

<button onclick="window.print()">Print this page</button>

</body>
</html>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

17

JavaScript Statements

JavaScript Programs

A computer program is a list of "instructions" to be "executed" by a computer.

In a programming language, these programming instructions are
called statements.

A JavaScript program is a list of programming statements.

In HTML, JavaScript programs are executed by the web browser.

JavaScript Statements

JavaScript statements are composed of:

Values, Operators, Expressions, Keywords, and Comments.

This statement tells the browser to write "Hello Dolly." inside an HTML element with
id="demo":

Example

document.getElementById("demo").innerHTML = "Hello Dolly.";

Most JavaScript programs contain many JavaScript statements.

The statements are executed, one by one, in the same order as they are written.

JavaScript programs (and JavaScript statements) are often called JavaScript code.

Semicolons ;

Semicolons separate JavaScript statements.

Add a semicolon at the end of each executable statement:

JavaScript White Space

JavaScript ignores multiple spaces. You can add white space to your script to make

it more readable.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

18

The following lines are equivalent:

let person = "Hege";

let person="Hege";

A good practice is to put spaces around operators (= + - * /):

let x = y + z;

JavaScript Line Length and Line Breaks

For best readability, programmers often like to avoid code lines longer than 80

characters.

If a JavaScript statement does not fit on one line, the best place to break it is after
an operator:

Example

document.getElementById("demo").innerHTML =

"Hello Dolly!";

JavaScript Code Blocks

JavaScript statements can be grouped together in code blocks, inside curly

brackets {...}.

The purpose of code blocks is to define statements to be executed together.

One place you will find statements grouped together in blocks, is in JavaScript
functions:

Example

function myFunction() {

 document.getElementById("demo1").innerHTML = "Hello Dolly!";

 document.getElementById("demo2").innerHTML = "How are you?";

}

In this tutorial we use 2 spaces of indentation for code blocks.
You will learn more about functions later in this tutorial.

Comments

Single line comments start with //.

Multi-line comments start with /* and end with */.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

19

JavaScript Operators

JavaScript Arithmetic Operators

JavaScript Assignment Operators

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

20

JavaScript Comparison Operators

JavaScript Logical Operators

Operator Precedence

Operator precedence describes the order in which operations are performed in an

arithmetic expression.

let x = 100 + 50 * 3;

Is the result of example above the same as 150 * 3, or is it the same as 100 +
150?

Is the addition or the multiplication done first?

As in traditional school mathematics, the multiplication is done first.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

21

Multiplication (*) and division (/) have higher precedence than addition (+) and

subtraction (-).

And (as in school mathematics) the precedence can be changed by using

parentheses:

let x = (100 + 50) * 3;

When using parentheses, the operations inside the parentheses are computed first.

When many operations have the same precedence (like addition and subtraction),
they are computed from left to right:

let x = 100 + 50 - 3;

JavaScript Operator Precedence Values

Value Operator Description Example

21 () Expression grouping (3 + 4)

20 . Member person.name

20 [] Member person["name"]

20 () Function call myFunction()

20 new Create new Date()

18 ++ Postfix Increment i++

18 -- Postfix Decrement i--

17 ++ Prefix Increment ++i

17 -- Prefix Decrement --i

17 ! Logical not !(x==y)

17 typeof Type typeof x

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

22

16 ** Exponentiation (ES2016) 10 ** 2

15 * Multiplication 10 * 5

15 / Division 10 / 5

15 % Division Remainder 10 % 5

14 + Addition 10 + 5

14 - Subtraction 10 - 5

13 << Shift left x << 2

13 >> Shift right x >> 2

13 >>> Shift right (unsigned) x >>> 2

12 < Less than x < y

12 <= Less than or equal x <= y

12 > Greater than x > y

12 >= Greater than or equal x >= y

12 in Property in Object "PI" in Math

12 instanceof Instance of Object instanceof Array

11 == Equal x == y

11 === Strict equal x === y

11 != Unequal x != y

11 !== Strict unequal x !== y

10 & Bitwise AND x & y

9 ^ Bitwise XOR x ^ y

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

23

8 | Bitwise OR x | y

7 && Logical AND x && y

6 || Logical OR x || y

5 ?? Nullish Coalescing x ?? y

4 ? : Condition ? "Yes" : "No"

3 += Assignment x += y

3 /= Assignment x /= y

3 -= Assignment x -= y

3 *= Assignment x *= y

3 %= Assignment x %= y

3 <<= Assignment x <<= y

3 >>= Assignment x >>= y

3 >>>= Assignment x >>>= y

3 &= Assignment x &= y

3 ^= Assignment x ^= y

3 |= Assignment x |= y

2 yield Pause Function yield x

1 , Comma 5 , 6

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

24

JavaScript Data Types
JavaScript variables can hold different data types: numbers, strings, objects and

more:

let length = 16; // Number

let lastName = "Johnson"; // String
let x = {firstName:"John", lastName:"Doe"}; // Object

The Concept of Data Types

In programming, data types is an important concept.

To be able to operate on variables, it is important to know something about the

type.

Without data types, a computer cannot safely solve this:

let x = 16 + "Volvo";

Result: 16Volvo

Does it make any sense to add "Volvo" to sixteen? Will it produce an error or will it

produce a result?

JavaScript will treat the example above as:

let x = "16" + "Volvo";

When adding a number and a string, JavaScript will treat the number as a string.

JavaScript evaluates expressions from left to right. Different sequences can
produce different results:

let x = 16 + 4 + "Volvo";

Result: 20Volvo

let x = "Volvo" + 16 + 4;

Result: Volvo164

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

25

JavaScript Types are Dynamic

JavaScript has dynamic types. This means that the same variable can be used to

hold different data types:

Example

let x; // Now x is undefined

x = 5; // Now x is a Number
x = "John"; // Now x is a String

JavaScript Strings

A string (or a text string) is a series of characters like "John Doe".

Strings are written with quotes. You can use single or double quotes:

You can use quotes inside a string, as long as they don't match the quotes
surrounding the string:

Example

let answer1 = "It's alright"; // Single quote inside double quotes

let answer2 = "He is called 'Johnny'"; // Single quotes inside double quotes
let answer3 = 'He is called "Johnny"'; // Double quotes inside single quotes

JavaScript Numbers

JavaScript has only one type of numbers.

Numbers can be written with, or without decimals:

Example

let x1 = 34.00; // Written with decimals

let x2 = 34; // Written without decimals

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

26

JavaScript Booleans

Booleans can only have two values: true or false.

Example

let x = 5;

let y = 5;

let z = 6;

(x == y) // Returns true
(x == z) // Returns false

JavaScript Arrays

JavaScript arrays are written with square brackets.

Array items are separated by commas.

The following code declares (creates) an array called cars, containing three items

(car names):

Example

const cars = ["Saab", "Volvo", "BMW"];

Array indexes are zero-based, which means the first item is [0], second is [1], and

so on.

JavaScript Objects

JavaScript objects are written with curly braces {}.

Object properties are written as name:value pairs, separated by commas.

Example

const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

27

The typeof Operator

You can use the JavaScript typeof operator to find the type of a JavaScript variable.

The typeof operator returns the type of a variable or an expression:

Example

typeof "" // Returns "string"

typeof "John" // Returns "string"

typeof "John Doe" // Returns "string"

typeof 0 // Returns "number"
typeof 314 // Returns "number"
typeof 3.14 // Returns "number"
typeof (3) // Returns "number"
typeof (3 + 4) // Returns "number"

Undefined

In JavaScript, a variable without a value, has the value undefined. The type is

also undefined.

Example

let car; // Value is undefined, type is undefined

car = undefined; // Value is undefined, type is undefined

Empty Values

An empty value has nothing to do with undefined.

An empty string has both a legal value and a type.

Example

let car = ""; // The value is "", the typeof is "string"

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

28

JavaScript Functions
A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

Example

function myFunction(p1, p2) {
 return p1 * p2; // The function returns the product of p1 and p2
}

JavaScript Function Syntax

A JavaScript function is defined with the function keyword, followed by a name,

followed by parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same

rules as variables).

The parentheses may include parameter names separated by commas:

(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

function name(parameter1, parameter2, parameter3) {

 // code to be executed
}

Function parameters are listed inside the parentheses () in the function definition.

Function arguments are the values received by the function when it is invoked.

Inside the function, the arguments (the parameters) behave as local variables.

A Function is much the same as a Procedure or a Subroutine, in other programming

languages.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

29

Function Invocation

The code inside the function will execute when "something" invokes (calls) the

function:

 When an event occurs (when a user clicks a button)
 When it is invoked (called) from JavaScript code

 Automatically (self invoked)

You will learn a lot more about function invocation later in this tutorial.

Function Return

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will "return" to execute
the code after the invoking statement.

Functions often compute a return value. The return value is "returned" back to
the "caller":

Example

Calculate the product of two numbers, and return the result:

let x = myFunction(4, 3); // Function is called, return value will end up

in x

function myFunction(a, b) {

 return a * b; // Function returns the product of a and b

}

Why Functions?

You can reuse code: Define the code once, and use it many times.

You can use the same code many times with different arguments, to produce

different results.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

30

The () Operator Invokes the Function

Using the example above, toCelsius refers to the function object,

and toCelsius() refers to the function result.

Accessing a function without () will return the function object instead of the

function result.

Example

function toCelsius(fahrenheit) {

 return (5/9) * (fahrenheit-32);

}

document.getElementById("demo").innerHTML = toCelsius;

Local Variables

Variables declared within a JavaScript function, become LOCAL to the function.

Local variables can only be accessed from within the function.

Example

// code here can NOT use carName

function myFunction() {

 let carName = "Volvo";

 // code here CAN use carName

}

// code here can NOT use carName

Since local variables are only recognized inside their functions, variables with the

same name can be used in different functions.

Local variables are created when a function starts, and deleted when the function is
completed.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

31

JavaScript Objects

Real Life Objects, Properties, and Methods

In real life, a car is an object.

A car has properties like weight and color, and methods like start and stop:

Object Properties Methods

car.name = Fiat

car.model = 500

car.weight = 850kg

car.color = white

car.start()

car.drive()

car.brake()

car.stop()

All cars have the same properties, but the property values differ from car to car.

All cars have the same methods, but the methods are performed at different

times.

JavaScript Objects

You have already learned that JavaScript variables are containers for data values.

Objects are variables too. But objects can contain many values.

This code assigns many values (Fiat, 500, white) to a variable named car:

const car = {type:"Fiat", model:"500", color:"white"};

The values are written as name:value pairs (name and value separated by a
colon).

It is a common practice to declare objects with the const keyword.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

32

Object Definition

You define (and create) a JavaScript object with an object literal:

Example

const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

Spaces and line breaks are not important. An object definition can span multiple

lines:

Example

const person = {

 firstName: "John",

 lastName: "Doe",

 age: 50,

 eyeColor: "blue"

};

Object Properties

The name:values pairs in JavaScript objects are called properties:

Property Property Value

firstName John

lastName Doe

age 50

eyeColor blue

Accessing Object Properties

You can access object properties in two ways:

objectName.propertyName or objectName["propertyName"]

JavaScript objects are containers for named values called properties.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

33

Object Methods

Objects can also have methods.

Methods are actions that can be performed on objects.

Methods are stored in properties as function definitions.

Property Property Value

firstName John

lastName Doe

age 50

eyeColor blue

fullName function() {return this.firstName + " " + this.lastName;}

A method is a function stored as a property.

Example

const person = {

 firstName: "John",

 lastName : "Doe",

 id : 5566,

 fullName : function() {

 return this.firstName + " " + this.lastName;

 }

};

The this Keyword

In a function definition, this refers to the "owner" of the function.

In the example above, this is the person object that "owns" the fullName function.

In other words, this.firstName means the firstName property of this object.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

34

Accessing Object Methods

You access an object method with the following syntax:

objectName.methodName()

name = person.fullName();

If you access a method without the () parentheses, it will return the function

definition:

Conditional Statements

Conditional statements are used to perform different actions based on different
conditions.

Very often when you write code, you want to perform different actions for different

decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is

true
 Use else to specify a block of code to be executed, if the same condition is

false
 Use else if to specify a new condition to test, if the first condition is false

 Use switch to specify many alternative blocks of code to be executed

The if Statement

Use the if statement to specify a block of JavaScript code to be executed if a

condition is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true
}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate a

JavaScript error.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

35

Example

Make a "Good day" greeting if the hour is less than 18:00:

if (hour < 18) {

 greeting = "Good day";
}

The else Statement

Use the else statement to specify a block of code to be executed if the condition is

false.

if (condition) {
 // block of code to be executed if the condition is true
} else {
 // block of code to be executed if the condition is false
}

Example

If the hour is less than 18, create a "Good day" greeting, otherwise "Good

evening":

if (hour < 18) {

 greeting = "Good day";

} else {

 greeting = "Good evening";
}

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and condition2

is true

} else {

 // block of code to be executed if the condition1 is false and condition2

is false
}

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

36

Example

If time is less than 10:00, create a "Good morning" greeting, if not, but time is less

than 20:00, create a "Good day" greeting, otherwise a "Good evening":

if (time < 10) {

 greeting = "Good morning";

} else if (time < 20) {

 greeting = "Good day";

} else {

 greeting = "Good evening";
}

The JavaScript Switch Statement

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block
}

This is how it works:

 The switch expression is evaluated once.
 The value of the expression is compared with the values of each case.

 If there is a match, the associated block of code is executed.
 If there is no match, the default code block is executed.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

37

Example

The getDay() method returns the weekday as a number between 0 and 6.

(Sunday=0, Monday=1, Tuesday=2 ..)

This example uses the weekday number to calculate the weekday name:

switch (3) {

 case 0:

 day = "Sunday";

 break;

 case 1:

 day = "Monday";

 break;

 case 2:

 day = "Tuesday";

 break;

 case 3:

 day = "Wednesday";

 break;

 case 4:

 day = "Thursday";

 break;

 case 5:

 day = "Friday";

 break;

 case 6:

 day = "Saturday";

}

The break Keyword

When JavaScript reaches a break keyword, it breaks out of the switch block.

This will stop the execution inside the switch block.

It is not necessary to break the last case in a switch block. The block breaks (ends)
there anyway.

Note: If you omit the break statement, the next case will be executed even if the
evaluation does not match the case.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

38

The default Keyword

The default keyword specifies the code to run if there is no case match:

Example

The getDay() method returns the weekday as a number between 0 and 6.

If today is neither Saturday (6) nor Sunday (0), write a default message:

switch (3) {

 case 6:

 text = "Today is Saturday";

 break;

 case 0:

 text = "Today is Sunday";

 break;

 default:

 text = "Looking forward to the Weekend";
}

Common Code Blocks

Sometimes you will want different switch cases to use the same code.

In this example case 4 and 5 share the same code block, and 0 and 6 share

another code block:

Example

switch (new Date().getDay()) {

 case 4:

 case 5:

 text = "Soon it is Weekend";

 break;

 case 0:

 case 6:

 text = "It is Weekend";

 break;

 default:

 text = "Looking forward to the Weekend";
}

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

39

JavaScript Popup Boxes
JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt
box.

Alert Box

An alert box is often used if you want to make sure information comes through to

the user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax

window.alert("sometext");

The window.alert() method can be written without the window prefix.

Example

alert("I am an alert box!");

Confirm Box

A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to
proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box
returns false.

Syntax

window.confirm("sometext");

The window.confirm() method can be written without the window prefix.

Example

if (confirm("Press a button!")) {

 txt = "You pressed OK!";

} else {

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

40

 txt = "You pressed Cancel!";
}

Prompt Box

A prompt box is often used if you want the user to input a value before entering a

page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to
proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks "Cancel"
the box returns null.

Syntax

window.prompt("sometext","defaultText");

The window.prompt() method can be written without the window prefix.

Example

let person = prompt("Please enter your name", "Harry Potter");

let text;

if (person == null || person == "") {

 text = "User cancelled the prompt.";

} else {

 text = "Hello " + person + "! How are you today?";

}

JavaScript Events

HTML events are "things" that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can "react" on these
events.

HTML Events

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

 An HTML web page has finished loading

 An HTML input field was changed
 An HTML button was clicked

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

41

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML
elements.

With single quotes:

<element event='some JavaScript'>

With double quotes:

<element event="some JavaScript">

In the following example, an onclick attribute (with code), is added to

a <button> element:

Example

<button onclick="document.getElementById('demo').innerHTML = Date()">The time
is?</button>

In the example above, the JavaScript code changes the content of the element with

id="demo".

In the example above, the JavaScript code changes the content of the element with

id="demo".

In the next example, the code changes the content of its own element

(using this.innerHTML):

Example

<button onclick="this.innerHTML = Date()">The time is?</button>

JavaScript code is often several lines long. It is more common to see event

attributes calling functions:

Example

<button onclick="displayDate()">The time is?</button>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

42

Common HTML Events

Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an

HTML element

onmouseout The user moves the mouse away from
an HTML element

onkeydown The user pushes a keyboard key

onkeyup The user pushes a keyboard key

onload The browser has finished loading the
page

onchange

 <select id="mySelect" onchange="myFunction()">
 <option value="Audi">Audi</option>

 <option value="BMW">BMW</option>
 <option value="Mercedes">Mercedes</option>

 <option value="Volvo">Volvo</option>
</select>

<p id="demo"></p>
<script>

function myFunction() {
 var x = document.getElementById("mySelect").value;

 document.getElementById("demo").innerHTML = "You selected: " + x;
}

</script>

onclick

<button onclick="myFunction()">Click me</button>
<p id="demo"></p>

<script>
function myFunction() {

 document.getElementById("demo").innerHTML = "Hello World";
}

</script>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

43

onmouseover / onmouseout

<img onmouseover="bigImg(this)" onmouseout="normalImg(this)" border="0"
src="smiley.gif" alt="Smiley" width="32" height="32">

<script>
function bigImg(x) {

 x.style.height = "64px";
 x.style.width = "64px";

}
function normalImg(x) {
 x.style.height = "32px";

 x.style.width = "32px";
}

</script>

onkeydown / onkeyup

<input type="text" id="demo" onkeydown="keydownFunction()"

onkeyup="keyupFunction()">
<script>

function keydownFunction() {
 document.getElementById("demo").style.backgroundColor = "red";

}
function keyupFunction() {

 document.getElementById("demo").style.backgroundColor = "green";
}

</script>

onkeyup

<input type="text" id="fname" onkeyup="myFunction()">

<script>
function myFunction() {

 var x = document.getElementById("fname");
 x.value = x.value.toUpperCase();

}
</script>

onload

<script>
function myFunction() {

 alert("Page is loaded");
}

</script>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

44

JavaScript Form Validation

HTML form validation can be done by JavaScript.

If a form field (fname) is empty, this function alerts a message, and returns false,

to prevent the form from being submitted:

JavaScript Example

function validateForm() {

 let x = document.forms["myForm"]["fname"].value;

 if (x == "") {

 alert("Name must be filled out");

 return false;

 }
}

The function can be called when the form is submitted:

HTML Form Example

<form name="myForm" action="/action_page.php" onsubmit="return

validateForm()" method="post">

Name: <input type="text" name="fname">

<input type="submit" value="Submit">
</form>

Automatic HTML Form Validation

HTML form validation can be performed automatically by the browser:

If a form field (fname) is empty, the required attribute prevents this form from

being submitted:

HTML Form Example

<form action="/action_page.php" method="post">

 <input type="text" name="fname" required>

 <input type="submit" value="Submit">
</form>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

45

JavaScript Can Validate Numeric Input
<p>Please input a number between 1 and 10:</p>

<input id="numb">
<button type="button" onclick="myFunction()">Submit</button>

<p id="demo"></p>

<script>
function myFunction() {

 let x = document.getElementById("numb").value;
 let text;

 if (x>=1 && x<=10) {
 text = "Input OK";

 } else {
 text = "Input not valid";

 }
 document.getElementById("demo").innerHTML = text;

}
</script>

Data Validation

Data validation is the process of ensuring that user input is clean, correct, and

useful.

Validation can be defined by many different methods, and deployed in many

different ways.

Server side validation is performed by a web server, after input has been sent to

the server.

Client side validation is performed by a web browser, before input is sent to a

web server.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

46

AngularJS

AngularJS History

AngularJS version 1.0 was released in 2012.

Miško Hevery, a Google employee, started to work with AngularJS in 2009.

The idea turned out very well, and the project is now officially supported by
Google.

AngularJS Introduction
AngularJS is perfect for Single Page Applications (SPAs).

AngularJS is a JavaScript framework. It can be added to an HTML page with

a <script> tag.

AngularJS extends HTML attributes with Directives, and binds data to HTML

with Expressions.

AngularJS is a JavaScript Framework

AngularJS is a JavaScript framework written in JavaScript.

AngularJS is distributed as a JavaScript file, and can be added to a web page with a
script tag:

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.mi

n.js"></script>

AngularJS Extends HTML

AngularJS extends HTML with ng-directives.

The ng-app directive defines an AngularJS application.

The ng-model directive binds the value of HTML controls (input, select, textarea)
to application data.

The ng-bind directive binds application data to the HTML view.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

47

AngularJS Example

<!DOCTYPE html>

<html lang="en-US">

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.mi

n.js"></script>

<body>

<div ng-app="">

 <p>Name : <input type="text" ng-model="name"></p>

 <h1>Hello {{name}}</h1> (ng-bind="name")

</div>

</body>

</html>

Example explained:

AngularJS starts automatically when the web page has loaded.

The ng-app directive tells AngularJS that the <div> element is the "owner" of an
AngularJS application.

The ng-model directive binds the value of the input field to the application
variable name.

The ng-bind directive binds the content of the <p> element to the application
variable name.

AngularJS Directives

As you have already seen, AngularJS directives are HTML attributes with

an ng prefix.

The ng-init directive initializes AngularJS application variables.

AngularJS Example

<div ng-app="" ng-init="firstName='John'">

<p>The name is </p>

</div>

Alternatively with valid HTML:

You can use data-ng-, instead of ng-, if you want to make your page HTML valid.

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

48

AngularJS Applications

AngularJS modules define AngularJS applications.

AngularJS controllers control AngularJS applications.

The ng-app directive defines the application, the ng-controller directive defines
the controller.

AngularJS Example

<div ng-app="myApp" ng-controller="myCtrl">

First Name: <input type="text" ng-model="firstName">

Last Name: <input type="text" ng-model="lastName">

Full Name: {{firstName + " " + lastName}}

</div>

<script>

var app = angular.module('myApp', []);

app.controller('myCtrl', function($scope) {

 $scope.firstName= "John";

 $scope.lastName= "Doe";

});
</script>

AngularJS modules define applications:

AngularJS Module

var app = angular.module('myApp', []);

AngularJS controllers control applications:

AngularJS Controller

app.controller('myCtrl', function($scope) {

 $scope.firstName= "John";

 $scope.lastName= "Doe";

});

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

49

AngularJS Expressions

AngularJS expressions are written inside double braces: {{ expression }}.

AngularJS will "output" data exactly where the expression is written:

AngularJS Example

<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.mi

n.js"></script>

<body>

<div ng-app="">

 <p>My first expression: {{ 5 + 5 }}</p>

</div>

</body>

</html>

If you remove the ng-app directive, HTML will display the expression as it is,

without solving it:

You can write expressions wherever you like, AngularJS will simply resolve the

expression and return the result.

Example: Let AngularJS change the value of CSS properties.

Change the color of the input box below, by changing its value:

Example

<div ng-app="" ng-init="myCol='lightblue'">

<input style="background-color:{{myCol}}" ng-model="myCol">

</div>

AngularJS Numbers
<div ng-app="" ng-init="quantity=1; price=5">

<h2>Cost Calculator</h2>

Quantity: <input type="number" ng-model="quantity">

Price: <input type="number" ng-model="price">

<h3>Total in Rupee: </h3>

</div>

http://www.upcissyoutube.com/

Website: www.upcissyoutube.com YouTube Channel: UPCISS

50

AngularJS Objects Looping
<div ng-app="" ng-init="names=[

{name:'Jani',country:'Norway'},

{name:'Hege',country:'Sweden'},

{name:'Kai',country:'Denmark'}]">

 <p>Looping with objects:</p>

 <li ng-repeat="x in names">

 {{ x.name + ', ' + x.country }}

</div>

AngularJS Expressions vs. JavaScript Expressions

Like JavaScript expressions, AngularJS expressions can contain literals, operators,

and variables.

Unlike JavaScript expressions, AngularJS expressions can be written inside HTML.

AngularJS expressions do not support conditionals, loops, and exceptions, while
JavaScript expressions do.

AngularJS expressions support filters, while JavaScript expressions do not.

Visit our Website

https://upcissyoutube.com/

http://www.upcissyoutube.com/
https://upcissyoutube.com/

